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ABSTRACT 

 
            Clinical data is complex, context-dependent, and multi-dimensional, and such data generates an 

amalgamation of computing research challenges. To extract and interpret the useful information from raw 
data is a challenging job. This study aims at developing an automated predictive model to diagnose the state 
of an epileptic patient using EEG signals. The segmented EEG signals are utilized to extract various statistical 
features which are used for prediction. Strategically, we have designed a fully automated neural network 
model, capable of classifying the seizure activity into ictal, interictal and normal state with an accuracy as 
high as 99.3%, maximum sensitivity of 100% and specificity as high as 98.3% for all the classes. For the 
different set of parameters and optimum number of neurons in hidden layer, ANN model revealed a 
superior model for validating the classification.   
Keywords: Epilepsy; Electroencephalogram (EEG); Prediction Model; Variance Inflation Factor (VIF); Artificial 
neural network (ANN); Computer Aided Classification (CAC). 
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INTRODUCTION 
 

Epilepsy affects about 1 % of world population, out of which 85 %  is prevalent in 
the developing countries [1]. Epilepsy is a chronic neurological brain disorder 
characterized by abnormal brain electrical activity which may alter consciousness, 
behavior, perception, sensation, and body movement. Abnormal brain activity is primarily 
due to hyper synchronous neuronal firing in the cerebral cortex and is manifested as 
epileptic seizures. The seizures are sudden, brief and recurrent, depending on the location 
and extent of the affected brain tissue [2]. According to the International League Against 
Epilepsy (ILAE-1981), seizures are classified into two categories (1) Generalized seizures 
that involve almost the entire brain, (2) Partial (or focal) seizures that originate from a 
specific portion of the brain and remain restricted to that area [3]. Diagnosis of epilepsy is 
a complicated problem due to overlapping symptomatology with other neurological 
disorders, not-so-clear knowledge of exact mechanism responsible for epilepsy, and lack 
of knowledge about the seizure progression [4]. However, detection of the disorder and 
recognition of the affected brain area is essential for the clinical diagnosis and treatment 
of epileptic patients.  Electroencephalogram (EEG) is a non-invasive method and is an 
effective tool for understanding the complex dynamical behavior of the brain and studying 
physiological states of the brain. Electroencephalogram has become a golden standard in 
epilepsy recognition and diagnosis. However, it generates massive volume of data which 
often requires the subjective judgment and analysis by an expert. Their complete visual 
analysis is not routinely possible. Usually, confirmation of the diagnosis involves a 
combination of the medical history of the patient and the EEG interpretation by an expert 
neurologist [5]. Development of accurate and reliable EEG-based automated tools are still 
in its infancy. Many automated system for accurate and timely diagnosis of epilepsy have 
emerged [6-8]. Nevertheless, with the advent of new signal processing techniques, there 
has been an increased interest in the analysis of the EEG for prediction of epileptic 
seizures. These algorithms can detect abnormal disorder and malfunctioning of the brain 
not only during the seizure but also before the onset of seizure up to some extent.  

 
In recent years, attempts have been reported on seizure detection and prediction 

from EEG analysis. Srinivasan et al. [9], employed time domain and frequency domain 
features to Elman recurrent neural network for classifying EEG signals. H. Ocak, et al [10] 
investigated entropy and approximate entropy for discriminating EEG signals. S Liang et al 
[11] used time frequency analysis and approximate entropy to detect epilepsy using linear 
least square method and linear discriminant analysis. H. Adeli et al. [12] have reported 
seizure prediction using artificial neural networks with wavelet pre-processing. Subasi et 
al. [13] have used neuro-fuzzy system for seizure detection. Varun Bajaj [14] has classified 
the EEG signals using intrinsic mode functions generated by empirical mode 
decomposition using SVM classifiers. In this study attempts are made to detect the seizure 
activity as a three group classification problem:  (1) healthy subjects (normal EEG), (2) 
epileptic subjects during a seizure-free interval or just beginning of seizure (interictal EEG), 
and (3) epileptic subjects during a seizure (ictal EEG). Since the medical interest is different 
for each one of these conditions, many different classification problems exist in the 
literature, [15-16], we have examined and selected few of them for the evaluation of our 
prediction model.  
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The study includes statistical methods including linear and some higher order 
cumulants features. They are quiet informative and efficient to analyze EEG signals and 
helpful for detection of epileptic seizure. Features used are derivable directly from the raw 
EEG having a very low computational complexity, which is an advantage when designing 
an on-line algorithm. The authors have used this technique to check the feasibility and 
effectiveness of developing a seizure detection paradigm that can easily be implemented 
on any embedded system device. The proposed method has potential in designing EEG 
based diagnostic system for detection of electroencephalographic changes. 
 

MATERIAL AND METHODOLOGY 
 

Data Acquisition 
 
For the present study, EEGs from five patients for each condition were selected 

and data comprising recordings taken by standardized International 10-20 system, 
containing 100 single-channel EEG signals of 23.6 s duration available in public domain 
(University of Bonn, Germany) [17]. Signals were recorded extra-cranially and intra-
cranially with 128-channel amplifier system using an average common reference, omitting 
electrodes containing pathological activity (C, D and E) or strong eye movement artifacts 
(A and B), digitized using 12-bit resolution and sampled at a rate of 173.61 Hz. Band-pass 
filter settings used were 0.53–40 Hz (12 dB/octave). The total number of EEG signals was 
300 (100 ictal signals, 100 normal signals and 100 interictal signals). In the present study, 
all EEG signal segments were selected and cut out from continuous multichannel EEG 
recordings after visual inspection for artifacts, (e.g., due to muscle activity or eye 
movements). Since discontinuities between the end and beginning of a time series are 
known to cause spurious spectral frequency components, segments of 4396 samples were 
at first cut out of the recordings. The final segments of N = 4096 samples were then 
chosen in such a way that the amplitude difference of the last and first data points was 
within the range of amplitude differences of consecutive data points, and the slopes at the 
end and beginning of the time series had the same sign [17]. The epochs were chosen 
such that they pass a weak stationary criterion, which makes the data suitable to be used 
as en masse. The data set comprises five different sets (F, Z, N, S, E) with different 
conditions, out of which the signals of set Z (as normal condition), set F (as interictal 
condition) and signals in set S (exhibiting ictal activity) are chosen for our work. One of the 
signals with amplitude in microvolts (µV) from each respective category is depicted in Fig 
1.    
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Fig.1 Amplitude of the signals (in µV) a) ictal state  b) normal state  c) pre-ictal state 
 

 
Features Extraction  
 

Two primary considerations for developing any prediction model for detection and 
classification are the type of features to be extracted from the EEG input signal and the 
type of analysis techniques to be applied on these extracted features [18]. Extracted 
features are meant to minimize the loss of important information embedded in the signal 
and to simplify the amount of resources needed to describe a huge set of data accurately 
[19].  

 
In the present study, in order to investigate the adequacy for the discrimination of 

three stages of an epileptic patient, a set of quantitative features was extracted from EEG 
signals tabulated in Table 1. Features are extracted using different techniques 
summarizing the original signal and have been widely used in predicting different classes 
of epileptic EEG. It is very difficult to evaluate the nonlinear dynamic property of the bio-
signals using first and second order statistics [20]. Hence, third and higher order cumulant 
which highlights the nonlinear behavior can be used for EEG signals. Taking this into 
consideration, the features selected for this study (set of thirteen features which include 
variance, skew, kurotosis, energy, entropy, median, mode) result from thorough review of 
literature, research efforts and understanding of EEG signals. The general idea of feature 
extraction is to convert features into mathematical descriptors. These features are then 
analyzed to find out the most relevant and effective features while discarding the 
nonperforming features. The chosen features are simple but robust for the morphology of 
EEG data for the classification problem. 
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Table 1:  Statistical Features extracted from the raw data 
 

Feature ID Feature Name Feature 

1 Mean 

 
2 Median 

 
3 Mode 

 
4 Max Amplitude Max(xi) 

5 Min Amplitude Min(xi) 

6 Entropy 

 

7 Energy 

 
8 Variance 

 
9 Skew 

 
10 Kurtosis 

 
11 Signal to Noise 

Ratio 
 

12 Non linear 
energy 

 

13 coefficient of 
variation 

 
 

 
Relevance of Features Selected   
 

Designing a prediction model with optimum number of features is always desired 
as it leads to better performance of the classifier in terms of time complexity. Prediction 
importance of each feature, in terms of rank and importance parameter in this study is 
extracted. All these features are distinct and uncorrelated to each other. The inter 
correlation between these features used in the prediction model was calculated based on 
variance inflation factor (VIF) indicating multi-collinear analysis. The VIF value for each 
feature was calculated using 

                  ,    
                                  (1)  
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Where Rj2 is the multiple correlation coefficient of one feature’s effect regressed 
onto the remaining features. Tolerance value obtained is less than 1 for these features 
indicating that the variable under consideration is almost a perfect linear combination of 
the independent variables. The R square and VIF value for each parameter is calculated 
and represented in Fig 2. The R square value obtained for the model as 0.869 leading to 
VIF equal to 4. If the VIF value is larger than 10 for a feature, its information could be 
hidden by other descriptors. [21-22]. Authors have performed the statistical analysis for 
the features extracted using Kruskal Wallis Test, a non-parametric method for testing 
whether samples are independent, or not related. Table 2   provides chi-square value and 
significance (p < 0.05) of each feature. 

 
Table 2: Statistical results obtained by Kruskal Wallis 

 

  Kruskal Wallis Test 

Feature 
ID 

Feature Name Chi-square Significance 

1 Mean 3.632 0.163 

2 Median 79.306 0.000 

3 Mode 252.220 0.000 

4 Max Amplitude 132.922 0.000 

5 Min Amplitude 97.964 0.000 

6 Entropy 14.382 0.001 

7 Energy 134.661 0.000 

8 Variance 94.818 0.000 

9 Skew 54.907 0.000 

10 Kurtosis 83.632 0.000 

11 Signal to Noise Ratio 16.340 0.012 

12 Non linear energy 4.149 0.126 

13 coefficient of variation 205.202 0.000 

 
 

 
 

Fig 2. Variation of VIF for different features 

Model R R Square 
Std. Error of the 
Estimate 

1 0.932 0.869 0.30287 

 

 
The various features extracted from the signals are informative and apt to analyze 

the EEG signals and few of them are reported. The energy signifies the strength of the 
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signal, entropy quantifies how randomly the seizure signals are distributed as compared to 
non-seizure signals  whereas variance indicates the distribution of the data with respect to 
mean [23]. Third order cumulants highlight the nonlinear behavior of EEG signals [18]. Fig 
3 represents some of the features chosen for the study for three different classes of 
signals. It has been observed that the signal having high energy of the order of (2 -3.5 ) x 
105 mW lies in the ictal range [24], whereas the energy in range of (0.3 - 1) x105 mW 
depicts interictal signal, and the energy less than 0.3 x 105 mW represents the normal 
signal (Fig 3(a)).  A decrease in entropy (as in normal state) indicates reduced stochastic 
behavior [25] as shown in Fig 3 (b), and high entropy indicates more disorder representing 
ictal state. The kurtosis range levels for S class is (1 - 3) and for Z class is (0 - 1) as shown in 
Fig 3 (c). It is clear from Fig 3 (d) that seizure state is more skewed [26] with the values in 
the range (-1 to 1) as compared to the normal state lying in the range of (0 to 0.7). The F 
state has the extreme values for skew and kurtosis depicting involvement of large number 
of dominating process. 
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Fig 3(a) Energy (b)  Entropy  (c) Skew (d) Kurtosis of normal, ictal and pre-ictal states 

 
Methodology  
 

EEG is an indicator which provides insight into brain’s activity. Many abnormalities 
of brain   related to improper functioning of brain can be analyzed by studying the EEG 
signals. Human knowledge of functioning of the brain is still insufficient to understand the 
sudden occurrence of epileptic seizures. But the detection of the disorder and recognition 
of the affected brain area is essential for the clinical diagnosis and treatment of epileptic 
patients. The purpose of the work is to develop a robust and efficient predictive model to 
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analyze human EEG signal for epilepsy. The strength of this study is its rigorous feature 
selection procedure which when applied to the prediction model gives high sensitivity and 
high specificity, allowing a high generalization and accurate classification. 

 
Work Flow 
 

The block diagram for the proposed computer aided classification (CAC) of EEG 
signals is shown in Fig 4 comprising feature extraction, feature selection and classification 
module. In feature extraction module, statistical texture features based on first-order, 
second-order, and higher-order statistics are computed from all 300 signals using 
MATLAB. For the design of proposed CAC system a database of thirteen non-overlapping 
features are chosen from all clinically acquired EEG signals. The parameter values were 
normalized to fit in the range of  (0-1) by min-max approach ( Eqn 2.) 

 

 (2) 
 
  Where Feature norm is the normalized value of the feature, Featurevalue , 

Maxvalue, and  Minvalue represents actual value, maximum and  minimum value of the 
parameter respectively under consideration. The brief description of the experiments 
carried out in the present work is depicted in Table 3. 

 
Table 3 Brief description of the experiments 

 

Experiment 1 In this experiment, the efficacy of feature vectors is analyzed and the prominent features 
which are significant are selected, discussed in 2.1.3. 

Experiment 2 In this experiment, exhaustive experiments are carried out to develop the architecture of 
prediction model by varying the number of neurons in the hidden layer thus deciding the 
best network topology. 

Experiment 3 I In this experiment, the network having the best efficiency as obtained in                     
Experiment 2 was ascertained further for classification purpose. The classification was 
performed with varying feature length and performance was analyzed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  



          ISSN: 0975-8585 
 

May-June    2014  RJPBCS 5(3)  Page No. 1137 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Proposed CAC system 
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System Architecture  
 

To analyze the EEG signals with enhanced accuracy and precision, various 
computational techniques such as neural networks, support vector machines, Bayes 
classifiers could be useful. However, neural networks have been successfully employed to 
process EEG signals because of its quality of generalization and great predictive power 
[27]. With large number of training samples and relatively larger number of synaptic 
weights, there is always a possibility of the network's free parameters adapting to special 
features of the training data. In our experiments, feed-forward multi-layered Neural 
Network technique is employed to obtain a predictive model as this classifier is less prone 
to over fitting and obtain good generalization performance to a certain extent even 
without feature space dimensionality reduction. [28]. The overall classification system 
consist of three layers of artificial NN with tan-hyperbolic and softmax function as  the 
activation function for hidden and output layers respectively with Cross Entropy as error 
function and BFGS (Broyden-Fletcher-Goldfarb-Shanno) as the technique used for training 
neural network. To reduce the bias of training and testing data set, bootstrapping 
technique and 5-fold and 10-fold cross-validation technique are preferred. These 
techniques provide the information how well the classification model will operate on 
unseen data [29]. For effective training of the network (primarily to avoid over fitting), to 
evaluate the average predictive ability of the method and for enhancing the prediction 
accuracy, we have used 70 % data set for training, 15% data set for testing and 15% for 
validation using bootstrapping method with 1000 seed points. The bootstrap data set is a 
fair representative of a generic training set extracted from input space. 

 
RESULTS AND DISCUSSION 

 
EEG captures the blueprint of the brain functionality and physiology of brain. The 

underlying physiology is the hyper synchronous activity of neurons resulting in abrupt 
surge of energy causing epileptic seizures [18]. Our study aims at developing a seizure 
detection technique which can be developed as a simple software application that can be 
easily installed in labs for aiding the neurophysiologists in the diagnosis and decision-
making process of seizure detection. The chosen set of features is simple but robust for 
the morphology of EEG data needed for the classification problem. In our design, the 
selected features in Experiment 1 represent thirteen neurons in the input layer. As this is a 
three classification problem, three neurons are taken in the output layer to classify ictal 
(S), interictal (F) and normal (Z) categories.  To find the neurons in the hidden layer, 
exhaustive hit and trial was conducted in Experiment 2. The topology of the network was 
decided by varying the number of hidden nodes in neuron layer. Starting with five neurons 
in the hidden layer, the number of neurons was incremented till optimum classification 
accuracy of the network was achieved. Each of the architecture with varying hidden 
neurons is trained, tested and validated; and the performance accuracies of the best ten 
models achieved are depicted in Fig 5. 
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Fig 5. Performance accuracies of different models in terms of training, testing and 
validating; with varying     number of neurons in hidden layer. 

 
      It was observed that the best classification accuracy was obtained with six 

neurons in hidden layer. It gives 100 % testing and validation accuracy and 99.5 % training 
accuracy. This network performs significantly better and requires a smaller number of 
iterations to train a neural network. As the number of nodes are increased the training 
efficiency decreases. In Experiment 3 the classification of the three stages was done by 
varying the size of FL. In this procedure, subsets of features were used to train the 
network and classify the signals, and NN performance was evaluated. This process was 
continued till all the available 13 features were used. The performance was evaluated in 
terms of training, testing and classification efficiencies of the network with different FL as 
shown in Table 4.  

 
Table 4.  Performance accuracy and validation results of NN with varying number of features 

 
Efficiencies ( in %) 

__________________________________________________________________________________________
__ 

 
Features   No of features FL          Training           Testing        Validation 

 Sensitivity 
________________________________________________________________________________________

___ 
 

Mean-std                2 26                   61.428             71.111       68.888 61.42 
Mean-std-eng             3 39                   84.28                82.22       86.66 76.65 
Me-std-eng-ent                4 52                   88.151             88.636          88.636 88.29 
Me-std-eng-ent-Sk-ku      6 78                   88.625             86.363       90.909 88.68 
Me-std-eng-ent-Sk-ku-sn  7 91                   93.364             88.636         86.363
 91.63 
Me-std-eng-ent-Sk-ku-sn-cov  8 104                 93.838             95.454          95.454 94.31 
Me-std-eng-ent-Sk-ku-sn-cov 10 130                 96.208              100         100 97.32 
med-mod 
Me-std-eng-ent-Sk-ku-sn-cov 11 143                 98.578               100          100 98.99 
med-moamax 
All  13 169                   99.8                 100          100 99.3 

_________________________________________________________________________________
__ 



          ISSN: 0975-8585 
 

May-June    2014  RJPBCS 5(3)  Page No. 1140 

It was observed that high classification ability in epileptic seizure detection was 
obtained by NN classifier by feature vector of length 13 in comparison with feature 
vectors of lengths 2, 3, 4 and so on as clearly depicted in Fig 6.  Thus, 13 features 
computed from EEG signal are considered for further analysis with 6 nodes in hidden layer 
and 3 nodes in the output layer of NN (Fig 7) 

 

 

Fig 6   Sensitivity analysis with respect to varying FL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 7.  Configuration of artificial neural network (ANN) used to develop predictive model 
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Performance Metrics  
 

 The most important aspect of a prediction method is its ability to make correct 
predictions. For correct classification and validity of the proposed method, sensitivity, 
specificity, accuracy and gain charts are the key parameters. The confusion matrix and 
classification summary are useful tools in evaluating the effectiveness of a classification 
network. Table 5 depicts the confusion matrix for the three stage classification with 
varying size of feature length. The results clearly indicate that accuracies and sensitivity 
obtained when only two features are used is low (85 %, 47 %, 52 % and 61.4 %, 
respectively). The performance becomes better as FL increases and for whole set of 
feature vector the sensitivities for all the three classes is maximum (98.8 % as Sens F, 99 % 
as Sen S and 100 % as Sen Z) with accuracy as high as 99.3 %. It can be stated that that the 
proposed approach yields good results with use of comprehensive and represented data 
for design of classifier. 

 
Table 5 :  Confusion Matrix  for classification of EEG signals into three classes for varying feature length. 

Confusion matrix 

        

 f s z Sen F  (%) Sen S(%) 
Sen 
Z(%) Acc(%) 

FL=2        
f 61 18 15 85   61.4 
s 4 34 16  47   
z 7 21 34   52.3  

FL=3        
f 94 13 0 94   91.6 
s 3 85 4  85   
z 3 2 96   96  

FL=4        
f 95 20 4 95.9   88.29 
s 1 79 6  79   
z 3 1 90   90  

FL=6        
f 87 11 0 87.8   88.6 
s 10 85 7  85   
z 2 4 93   93  

FL=8        
f 97 1 3 97.9   94.3 
s 1 92 4  92   
z 1 7 93   93  

FL=10        
f 97 4 1 97.9   97.32 
s 1 96 1  96   
z 1 0 98   98  

FL=11        
f 96 0 0 96.9   98.9 
s 3 100 0  100   
z 0 0 100   100  

FL=13        
f 98 0 0 98.98    
s 0 99 0  99  99.3 
z 1 1 100   100  

TABLE 6 (a)   Confusion Matrix for the selected prediction model. 
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Predicted 

category 
Pre-ictal Ictal Normal 
__________________________________________________ 
 
Pre-ictal     98 0 0 
Ictal     0  99 0 
Normal     1  1 100 
_________________________________________________ 

 
(b) Performance Measure 

 
 POSITIVE(Seizure) NEGATIVE( Normal) 

   
POSITIVE (Correctly detected) 197 (TruePositive) 0(False Negative) 

   
NEGATIVE(Not detected) 2(False Positive) 100(True Negative) 

   

 
(c) Classification Summary for three classes using 13-6-3 network architecture with FL = 13. 

 

 

Classification summary 

 

 
category-

f 
category-

s 
category-

z 
category-

All 
 Total 99 100 100 299 
 Correct 98 99 100 297 
 Incorrect 1 1 0 2 

 
Correct 

(%) 
98.98 99 100 99.33 

 
Incorrect 

(%) 
1.01 1 0 

0.67 
 

 

 
After all the three experiments, the prediction model was evaluated for 

classification with the proposed architecture. The confusion matrix and classification 
summary for the model is depicted in Table 6, (a) Confusion matrix, (b) Performance 
Measure, (c) Classification Summary . For clinical applications, diagnosis system should not 
only give high sensitivity and high specificity but also should give almost zero false positive 
and false negative events [31] 

The performance measures [30]for the prediction model are:  
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The correct classification accuracy is 99.3 % and misclassification accuracy is 0.67 
%.  With our methodology, a normal EEG is misclassified only 0.67 % and gives 99.3 % 
correct categorization. The inter-ictal EEG is misclassified as ictal EEG for 1 % of the time 
and ictal EEG is misclassified as inter-ictal for 1 % of the time.  

 
CONCLUSION 

 
This paper presents the designing of predictive neural network model for 

classification of EEG signals with high accuracy. The experimental results show that 
proposed classifier promises high classification accuracy (99.3 %), maximum sensitivity 
(100 %), specificity (98.3 %) and high gains for classifying different stages of epileptic 
patient. The proposed model can assist clinicians for diagnosing different epileptic stages. 
The promising performances observed are demonstrative of the efficiency and efficacy of 
systems developed for classification and prediction of normal, ictal and interictal 
conditions of epileptic patients. The method and technique adopted are simple, less 
complex, quick and easily realizable on the DSP processors. In the present study authors 
have primarily used linear features and some of higher order cumulants. However, the 
system performance can be further improved by using nonlinear features as LLE, CD, Hurst 
Exponent, App Entropy, HOS for seizure detection.    
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